This episode will make a great companion for a long drive.
A blueprint for choosing the right fish oil supplement — filled with specific recommendations, guidelines for interpreting testing data, and dosage protocols.
Lactate, which is produced during exercise, acts similarly to ketones, and under conditions of hypoxia (which can occur during exercise), it can be used as an alternate fuel source. In particular, lactate crosses the blood-brain barrier for use by neurons as an energy source. This allows glucose to be spared for other essential processes like the recycling of the antioxidant glutathione. In this clip, Dr. Dominic D'Agostino explains the interrelationship between ketones and lactate as sources of energy for the brain and the role ketones may have in reducing oxidative stress through greater energetic efficiency.
Rhonda: And so reduction of ROS, because I would, no, I guess some of Richard Veech's, have put some ideas out there about the...
Dom: Ketones, direct effect, yeah, on that, too.
Rhonda: Yeah, it's so funny because in my mind I always think about like, well, if you're inducing your mitochondria to work more, you're going to make more reactive oxygen species, right, and that's, sort of, what I think would be a driver of killing abnormal cells, cancer cells that are primed to die. They're expressing way more pro-apoptotic proteins they've countered it with anti-apoptotics. All they need is a little push, a little reactive oxygen species pushed to death.
Dom: And that's increased initially.
Rhonda: It is.
Dom: So yeah, it actually activates like a Nrf2. So when someone gets on a ketogenic diet, it's a stress to the body and you...
Rhonda: Yeah, so you are...you aren't making more, because if you are causing your mitochondria to only work, right, that's the only way you can make energy, then you'd think that you have to be making reactive oxygen species. At least if you're looking in the context of a cancer cell, which just would be glycolytic and not using the mitochondria at all, right? Then definitely there would be a much more, an increase in ROS. So ketone, so you're saying that it can suppress ROS. Is that through some of what Richard Veech has put out there in the semi-ubiquinone, how it's like...
Dom: Oxidize Q, makes it less available.
Rhonda: Yeah, right, because that's the most...
Dom: If Q is oxidized, yeah, so.
Rhonda: So Q being ubiquinone.
Dom: Yeah, ubiquinone. If ubiquinone is oxidized, which is achieved with our beta-hydroxybutyrate metabolism, if that's oxidized, then you have less availability for that electron to react with molecular oxygen in the metabolic pathway. So you would produce less superoxide anion, which is your precursor to more reactive oxygen species. And that's been shown elegantly in a number of models including the cardiac model, which he did, the Langenhorn [SP] model, the perfused heart preparation showing that you get a greater hydrolic efficiency of the heart in the presence of ketones. You know, with a given amount of oxygen, you can generate proportionally more ATP, energy currency.
Rhonda: Is there another way that ketones also suppress ROS? Or is that through the hormetic effect of activating mitochondria, then increasing Nrf2 and things like that?
Dom: Yeah, that would be a secondary effect. I would say from a acute point of view, as simply as a metabolic fuel through the mitochondrial efficiency is greater. So you have a greater mitochondrial membrane potential, a greater driving force for ATP synthase to make ATP. So it energizes the mitochondria in a way that would be expected from a metabolic fuel that's, sort of, superior from a bioenergetic point of view. So you have a greater capacity to generate ATP for a given amount of oxygen that's available. So with that occurring, the metabolic efficiency of the cell would be, sort of, preserved, you're using less oxygen to make the same amount of ATP, less reactive oxygen species. And, of course, if you're shifting away from glycolysis and shifting towards oxidative phosphorylation...
Rhonda: So in the context of a cancer cell.
Dom: In the context of, yeah, any kind of cell, like our tissue, really, skeletal muscle or cancer cell, yeah, you are forcing the body in a way and to stress, initially, to upregulate mitochondrial machinery, really, and more mitochondria will start budding off and creating mitochondrial biogenesis.
Rhonda: So it increases mitochondrial biogenesis.
Dom: Yeah, the number of mitochondria. Then, the proteins that are associated with the electron transport chain, those proteins are upregulated.
Rhonda: That's very interesting. It acts very similar to lactate. I don't know if you're familiar with any of, like, the brain work, and George Brooks, and lactate.
Dom: Yeah. I...very interested in lactate as a graduate student.
Rhonda: Because it does the same thing. Goes to the same transporter, right?
Dom: Yeah, at MCT. I studied lactate as, sort of, an undergrad and graduate student, like, I am studying ketones now as an alternative fuel.
Rhonda: Oh, really? We're you looking at it in the brain?
Dom: Yeah, during hypoxia. So I studied the neural control of autonomic regulation, so brain hypoxia and what our brains do under hypoxia. And lactate is a big player in preserving brain function, viability, health, and I studied lactate as an alternative energy source under hypoxia. And now, I think of ketones as, like, the alternative energy source when your brain is under normal physiology. And I think there are some uses for lactate, too, as a fuel. I think when we exercise we're creating lactate and we feel good, it's not really talked about. It's something that I want to study and maybe talk about a little bit more is that the lactate...you're also sending, not only are you sending ketones to your brain, but you're sending lactate to your brain, and I think that's maybe not talked about that much, but there's a potential out there for lactate supplements.
Rhonda: George Brooks in UC Berkeley, he's...I don't know if you're familiar with any of his work.
Dom: A little bit, yeah, peripherally.
Rhonda: He pioneered the whole lactate shuttle theory, but he's been looking at the effects of lactate generated during exercise, for example, when you're forcing your muscle cells to work harder and you're making more lactate, it gets over, it crosses over the blood-brain barrier gets into neurons. So neurons themselves actually use lactate generated from astrocytes. So they are using, I mean, neurons actually using lactate. It's also a thermodynamically and energetically favorable source of energy much like ketones. And so neurons like doing that because, one, it's easier, and two, because glucose can then be freed up to be shunted into the pentose phosphate pathway, which can be used to generate NADPH, which is important for glutathione recycling.
Dom: Antioxidant capacity, yeah.
Rhonda: Right, which makes sense why... Probably, I think there's a lot of parallels between ketone bodies and ketone supplements and how they're not only being used as a preferential source of energy in the brain. Do you know anything about this, about, like, how frees up glucose then to be used for other...
Dom: Glucose sparing.
Rhonda: ...metabolic pathways? Yeah, glucose sparing.
Dom: Yeah, it's thought that some of the work by Stephen Cunnane, I think, is shedding light on this, too.
Rhonda: Where is he at?
Dom: He's in Canada. I forget the institute that he's at. Joe LaManna has done some similar work and he's at Case Western and looked at the, kind of, the interaction of what does the brain prefer...what's the preferred fuel source for the brain. I get this question a lot. I think it depends on, you know...I don't know if it's right to say that the brain always prefers ketones.
Rhonda: The brain cell we're talking about, for one. The neuron, astrocytes.
Dom: Neurons and astrocytes. But, yeah, I guess, I mean, maybe we're definitely biased towards understanding neurons relative to astrocytes.
Rhonda: I think most people that ask me that question are....
Dom: Astrocytes are fascinating. I think we need to study that more. But I think in the context of, like, aging and a context of traumatic brain injury or pathology, I think the brain will really prefer to use ketones because...or in the context of some kind of stress hypoglycemia or something like that, I think the brain will also prefer to use ketones.
A molecule that inhibits oxidative damage to DNA, proteins, and lipids in cells. Oxidative damage plays a role in the aging process, cancer, and neurodegeneration. Many vitamins and plant-based compounds are antioxidants.
Star-shaped cells found in the brain and spinal cord. Astrocytes facilitate neurotransmission, provide nutrients to neurons, maintain neuronal ion balance, and support the blood-brain barrier. Astrocytes also play a role in the repair and scarring process of the brain and spinal cord following traumatic injuries.
A chemical produced in the liver via the breakdown of fatty acids. Beta-hydroxybutyrate is a type of ketone body. It can be used to produce energy inside the mitochondria and acts as a signaling molecule that alters gene expression by inhibiting a class of enzymes known as histone deacetylases.
A highly selective semi-permeable barrier in the brain made up of endothelial cells connected by tight junctions. The blood-brain barrier separates the circulating blood from the brain's extracellular fluid in the central nervous system. Whereas water, lipid-soluble molecules, and some gases can pass through the blood-brain barrier via passive diffusion, molecules such as glucose and amino acids that are crucial to neural function enter via selective transport. The barrier prevents the entry of lipophilic substances that may be neurotoxic via an active transport mechanism.
A survival mechanism the brain relies on during starvation. Glucose sparing occurs when the body utilizes fatty acids as its primary fuel and produces ketone bodies. The ketone bodies cross the blood-brain barrier and are used instead of glucose, thereby “sparing” glucose for use in other metabolic pathways, such as the pentose-phosphate pathway, which produces NADPH. NADPH is essential for the production of glutathione, one of the major antioxidants used in the body and brain.
A series of enzyme-dependent reactions that breaks down glucose. Glycolysis converts glucose into pyruvate, releasing energy and producing ATP and NADH. In humans, glycolysis occurs in the cytosol and does not require oxygen.
Biological responses to low-dose exposures to toxins or other stressors such as exercise, heat, cold, fasting, and xenohormetics. Hormetic responses are generally favorable and elicit a wide array of protective mechanisms. Examples of xenohormetic substances include plant polyphenols – molecules that plants produce in response to stress. Some evidence suggests plant polyphenols may have longevity-conferring effects when consumed in the diet.
Abnormally low blood glucose. Hypoglycemia can occur due to low glycogen stores, diabetes medications, or other drugs. Maternal alcohol consumption can cause hypoglycemia in breastfed infants. Symptoms of hypoglycemia include confusion, heart palpitations, shakiness, and anxiety.
Condition in which the body or a region of the body is deprived of adequate oxygen supply. Hypoxia may be classified as either generalized, affecting the whole body, or local, affecting a region of the body.
A diet that causes the body to oxidize fat to produce ketones for energy. A ketogenic diet is low in carbohydrates and high in proteins and fats. For many years, the ketogenic diet has been used in the clinical setting to reduce seizures in children. It is currently being investigated for the treatment of traumatic brain injury, Alzheimer's disease, weight loss, and cancer.
Molecules (often simply called “ketones”) produced by the liver during the breakdown of fatty acids. Ketone production occurs during periods of low food intake (fasting), carbohydrate restrictive diets, starvation, or prolonged intense exercise. There are three types of ketone bodies: acetoacetate, beta-hydroxybutyrate, and acetone. Ketone bodies are readily used as energy by a diverse array of cell types, including neurons.
Lactate is thought to participate in a sort of "lactate shuttle" where, after being produced in muscle from exercise, it is transported in to tissues like the heart, and brain, where it is used as an energy source. Lactate is one of many molecules that falls under a loose group of molecules referred to as exerkines, a broad group of exercise-induced hormonal-like factors. Evidence suggests that lactate is the preferred fuel of the brain. Additionally, rodent studies suggest that lactate mediates some of the benefits of exercise on learning and memory via inducing neuronal brain-derived neurotrophic factor (BDNF) expression.[1] In clinical studies, lactate shows promise as a treatment for inflammatory conditions including traumatic brain injury and as a means to deliver fuel to working muscles.
Lactate that is produced from an oxygen-independent metabolic pathway (glycolysis) is shuttled to various tissues including muscle, heart, and brain, where it is used as a substrate for oxygen-dependent energy production.
The thousands of biochemical processes that run all of the various cellular processes that produce energy. Since energy generation is so fundamental to all other processes, in some cases the word metabolism may refer more broadly to the sum of all chemical reactions in the cell.
Tiny organelles inside cells that produce energy in the presence of oxygen. Mitochondria are referred to as the "powerhouses of the cell" because of their role in the production of ATP (adenosine triphosphate). Mitochondria are continuously undergoing a process of self-renewal known as mitophagy in order to repair damage that occurs during their energy-generating activities.
The process by which new mitochondria are made inside cells. Many factors can activate mitochondrial biogenesis including exercise, cold shock, heat shock, fasting, and ketones. Mitochondrial biogenesis is regulated by the transcription factor peroxisome proliferator-activated receptor gamma coactivator 1-alpha, or PGC-1α.
A protein typically present in the cytoplasm of mammalian cells. Nrf2 can relocate to the nucleus where it regulates the expression of hundreds of antioxidant and stress response proteins that protect against oxidative damage triggered by injury and inflammation. One of the most well-known naturally-occurring inducers of Nrf2 is sulforaphane, a compound derived from cruciferous vegetables such as broccoli.
Highly reactive molecules that have the ability to oxidize other molecules and cause them to lose electrons. Common oxidants are oxygen, hydrogen peroxide, and superoxide anion.
The process of generating energy that occurs when mitochondria couple oxygen with electrons that have been derived from different food sources including glucose, fatty acids, and amino acids.
An alternate pathway for the oxidation of glucose. The pentose phosphate pathway parallels glycolysis, but does not require or produce ATP; rather, it produces NADPH, which is necessary to create the cellular antioxidant glutathione. Like glycolysis, the pentose phosphate pathway occurs in the cytoplasm.
Oxygen-containing chemically-reactive molecules generated by oxidative phosphorylation and immune activation. ROS can damage cellular components, including lipids, proteins, mitochondria, and DNA. Examples of ROS include: peroxides, superoxide, hydroxyl radical, and singlet oxygen.
A related byproduct, reactive nitrogen species, is also produced naturally by the immune system. Examples of RNS include nitric oxide, peroxynitrite, and nitrogen dioxide.
The two species are often collectively referred to as ROS/RNS. Preventing and efficiently repairing damage from ROS (oxidative stress) and RNS (nitrosative stress) are among the key challenges our cells face in their fight against diseases of aging, including cancer.
A chemical reaction in which an atom, molecule, or ion gains one or more electrons.
A fat-soluble compound that is present inside the inner-mitochondrial membrane of cells. It plays a role in aerobic cellular respiration which produces energy in the presence of oxygen. The heart, liver, and kidney have the highest CoQ10 concentrations.
Learn more about the advantages of a premium membership by clicking below.
If you enjoy the fruits of , you can participate in helping us to keep improving it. Creating a premium subscription does just that! Plus, we throw in occasional member perks and, more importantly, churn out the best possible content without concerning ourselves with the wishes of any dark overlords.