These episodes make great companion listening for a long drive.
An essential checklist for cognitive longevity — filled with specific exercise, heat stress, and omega-3 protocols for boosting BDNF. Enter your email, and we'll deliver it straight to your inbox.
Tim Ferriss, notorious self-experimenter, angel investor, startup advisor, NY Times bestselling author (3x), and much more.
Vasopressin not only inhibits the urge to urinate but also is a nootropic smart drug and functions as a love-hormone in males.
Tim Ferriss discusses his self-experimentation with the ketogenic diet and the biomarkers he measures on a daily basis.
Rhonda's anecdote on how 5-methylfolate and methylcobalamin supplementation decreased her mother's blood pressure who was MTHFR homozygous.
Tim Ferriss practices a cyclical ketogenic diet to reduce the risk and on delay the onset of Alzheimer's.
Certain types of inflammation promote diseases and aging while others are needed for muscle growth and longevity.
Vitamin C can act as a potent antioxidant and reduce inflammation in the body but also inhibit muscle growth.
The potential that Vitamin C or Metformin has for reducing cancer risk.
Tim Ferriss describes his experience and opinions on Lyme disease.
Dr. Rhonda Patrick talks about her experience with contracting MRSA and the side-effects she experienced from antibiotics.
Tim Ferriss' personal introduction and experience to ketosis.
The 4-Hour Body by Tim Ferriss talks about improving your body's performance while doing less.
How to reduce social stresses by inoculating yourself with similar stresses.
Meditation can help you stay focused and improve production.
Tim Ferriss' future plans in Hollywood.
A neurodegenerative disorder characterized by progressive memory loss, spatial disorientation, cognitive dysfunction, and behavioral changes. The pathological hallmarks of Alzheimer's disease include amyloid-beta plaques, tau tangles, and reduced brain glucose uptake. Most cases of Alzheimer's disease do not run in families and are described as "sporadic." The primary risk factor for sporadic Alzheimer's disease is aging, with prevalence roughly doubling every five years after age 65. Roughly one-third of people aged 85 and older have Alzheimer's. The major genetic risk factor for Alzheimer's is a variant in the apolipoprotein E (APOE) gene called APOE4.
An area of the brain located close to the hippocampus, in the frontal portion of the temporal lobe. The amygdala governs our responses to fear, arousal, and emotional stimulation. Poor sleep increases activity within the amygdala.
A toxic 42 amino acid peptide that aggregates and forms plaques in the brain with age. Amyloid-beta is associated with Alzheimer's disease, a progressive neurodegenerative disease that can occur in middle or old age and is the most common cause of dementia. Heat shock proteins have been shown to inhibit the early aggregation of amyloid beta 42 and reduce amyloid beta plaque toxicity [1].
A molecule that inhibits oxidative damage to DNA, proteins, and lipids in cells. Oxidative damage plays a role in the aging process, cancer, and neurodegeneration. Many vitamins and plant-based compounds are antioxidants.
One of three common genetic variants of the APOE (apolipoprotein E) gene. The APOE4 allele, which is present in approximately 10-15% of people, increases the risk of developing Alzheimer's disease and lowers the age of onset. Having one copy of E4 increases risk 2- to 3-fold, while having two copies increases risk as much as 15-fold.
A lipoprotein produced in the liver and the brain. In the brain, ApoE transports fatty acids and cholesterol to neurons. In the bloodstream, it binds and transports cholesterol, bringing it to tissues and recycling it back to the liver. Approximately 25% of people carry a genetic variant of this lipoprotein called ApoE4, which is associated with higher circulating levels of LDL cholesterol and a 2- to 3-fold increased risk of developing Alzheimer's disease.
An intracellular degradation system involved in the disassembly and recycling of unnecessary or dysfunctional cellular components. Autophagy participates in cell death, a process known as autophagic dell death. Prolonged fasting is a robust initiator of autophagy and may help protect against cancer and even aging by reducing the burden of abnormal cells.
The relationship between autophagy and cancer is complex, however. Autophagy may prevent the survival of pre-malignant cells, but can also be hijacked as a malignant adaptation by cancer, providing a useful means to scavenge resources needed for further growth.
An ancient system of medicine. Ayurvedic medicine originated in India more than 3,000 years ago. It is based on a holistic approach that emphasizes treating both mind and body through diet, exercise, sleep, relaxation, and mindfulness.
A chemical produced in the liver via the breakdown of fatty acids. Beta-hydroxybutyrate is a type of ketone body. It can be used to produce energy inside the mitochondria and acts as a signaling molecule that alters gene expression by inhibiting a class of enzymes known as histone deacetylases.
The extent and rate at which drugs or other substances, such as plant-based dietary compounds, enter the body’s circulation. Bioavailability is influenced by a variety of factors, including dose, the presence of other foods or substances, and interindividual differences in metabolism due to gut absorptive surface and commensal microbial populations.
Densely packed communities of microorganisms that live on or in inert surfaces as well as plant and animal tissues. Biofilms are spatially organized into three-dimensional structures and enclosed in a matrix of extracellular material that confers protection to the microbial community they house.
A measurable substance in an organism that is indicative of some phenomenon such as disease, infection, or environmental exposure.
An amino acid having aliphatic side-chains with a branch (a central carbon atom bound to three or more carbon atoms). Among the proteinogenic amino acids, there are three BCAAs: leucine, isoleucine and valine.
Play or music or otherwise perform for voluntary donations in the street or in subways.
A waxy lipid produced primarily in the liver and intestines. Cholesterol can be synthesized endogenously and is present in all the body's cells, where it participates in many physiological functions, including fat metabolism, hormone production, vitamin D synthesis, and cell membrane integrity. Dietary sources of cholesterol include egg yolks, meat, and cheese.
Bacteria that are beneficial or at least not harmful to the host, in contrast to pathogenic bacteria where the host derives no benefit and is actively harmed from the relationship. Roughly 100 trillion commensal bacteria live in the human gut. The term commensal comes from Latin and literally means “eating at the same table.”
An antioxidant compound produced by the plant Curcuma longa, a member of the ginger family. Curcumin exhibits a wide array of beneficial health effects, including anti-inflammatory, anti-cancer, and anti-diabetes properties. It is responsible for the bright yellow pigment of turmeric, a type of spice commonly used in Indian food.
A broad category of small proteins (~5-20 kDa) that are important in cell signaling. Cytokines are short-lived proteins that are released by cells to regulate the function of other cells. Sources of cytokines include macrophages, B lymphocytes, mast cells, endothelial cells, fibroblasts, and various stromal cells. Types of cytokines include chemokines, interferons, interleukins, lymphokines, and tumor necrosis factor.
A general term referring to cognitive decline that interferes with normal daily living. Dementia commonly occurs in older age and is characterized by progressive loss of memory, executive function, and reasoning. Approximately 70 percent of all dementia cases are due to Alzheimer’s disease.
A mood disorder characterized by profound sadness, fatigue, altered sleep and appetite, as well as feelings of guilt or low self-worth. Depression is often accompanied by perturbations in metabolic, hormonal, and immune function. A critical element in the pathophysiology of depression is inflammation. As a result, elevated biomarkers of inflammation, including the proinflammatory cytokines interleukin-6 and tumor necrosis factor-alpha, are commonly observed in depressed people. Although selective serotonin reuptake inhibitors and cognitive behavioral therapy typically form the first line of treatment for people who have depression, several non-pharmacological adjunct therapies have demonstrated effectiveness in modulating depressive symptoms, including exercise, dietary modification (especially interventions that capitalize on circadian rhythms), meditation, sauna use, and light therapy, among others.
A broad-spectrum antibiotic used in the treatment of bacterial infections. Doxycycline, commonly called “doxy,” is a bacteriostatic drug that slows bacterial growth by inhibiting protein production. The World Health Organization considers doxycycline an essential medicine because of its widespread applications and its use as a treatment against biothreats such as anthrax, tularemia, and plague.
An unhealthy change in the normal bacterial ecology of a part of body, e.g., the intestines or the oral cavity.
A type of toxin released when bacteria die. Endotoxins can leak through the intestinal wall and pass directly into the bloodstream. The most common endotoxin is lipopolysaccharide (LPS), a major component of the cell membrane of gram-negative bacteria. If LPS leaks into the bloodstream, it can trigger an acute inflammatory reaction. LPS has been linked with a number of chronic diseases, including Alzheimer’s disease, inflammatory bowel disease (Crohn’s disease or ulcerative colitis), cardiovascular disease, diabetes, obesity, autoimmune disorders (celiac disease, multiple sclerosis, and type 1 diabetes), and psychiatric disorders (anxiety and depression).
Any of a group of complex proteins or conjugated proteins that are produced by living cells and act as catalyst in specific biochemical reactions.
Genetic control elicited by factors other than modification of the genetic code found in the sequence of DNA. Epigenetic changes determine which genes are being expressed, which in turn may influence disease risk. Some epigenetic changes are heritable.
Beneficial stress that can be psychological, physical (e.g. exercise), or biochemical (hormesis) in nature.
A molecule composed of carboxylic acid with a long hydrocarbon chain that is either saturated or unsaturated. Fatty acids are important components of cell membranes and are key sources of fuel because they yield large quantities of ATP when metabolized. Most cells can use either glucose or fatty acids for this purpose.
A type of water-soluble B-vitamin, also called vitamin B9. Folate is critical in the metabolism of nucleic acid precursors and several amino acids, as well as in methylation reactions. Severe deficiency in folate can cause megaloblastic anemia, which causes fatigue, weakness, and shortness of breath. Certain genetic variations in folate metabolism, particularly those found in the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene influences folate status. Inadequate folate status during early pregnancy increases the risk of certain birth defects called neural tube defects, or NTDs, such as spina bifida, anencephaly, and other similar conditions. Folate deficiency and elevated concentrations of homocysteine in the blood are associated with increased risk of cardiovascular disease. Low folate status and/or high homocysteine concentrations are associated with cognitive dysfunction in aging (from mild impairments to dementia). The synthetic form of folate is called folic acid. Sources of folate include most fruits and vegetables, especially green leafy vegetables.
The genetic constitution of an individual organism. The combination of genotype and environment determine an organism's physical characteristics – known as the phenotype.
A highly branched chain of glucose molecules that serves as a reserve energy form in mammals. Glycogen is stored primarily in the liver and muscles, with smaller amounts stored in the kidneys, brain, and white blood cells. The amount stored is influenced by factors such as physical training, basal metabolic rate (BMR), and eating habits.
A series of enzyme-dependent reactions that breaks down glucose. Glycolysis converts glucose into pyruvate, releasing energy and producing ATP and NADH. In humans, glycolysis occurs in the cytosol and does not require oxygen.
A blood test that measures the amount of glycated hemoglobin in a person’s red blood cells. The hemoglobin A1c test is often used to assess long-term blood glucose control in people with diabetes. Glycation is a chemical process in which a sugar molecule bonds to a lipid or protein molecule, such as hemoglobin. As the average amount of plasma glucose increases, the fraction of glycated hemoglobin increases in a predictable way. In diabetes mellitus, higher amounts of glycated hemoglobin, indicating poorer control of blood glucose levels, have been associated with cardiovascular disease, nephropathy, neuropathy, and retinopathy. Also known as HbA1c.
An amino acid present in the blood. Homocysteine is produced during the metabolism of methionine. Abnormalities in methionine metabolism can lead to elevated homocysteine levels, a condition called hyperhomocysteinemia. Elevated homocysteine levels can contribute to arterial plaque formation and increase the risk of clot formation. Some evidence suggests that elevated homocysteine levels double the risk of developing Alzheimer’s disease. Homocysteine levels vary according to dietary intake, with highest levels associated with consumption of animal protein. Variants in the genes that encode for the enzymes that metabolize homocysteine, specifically MTHFR, or methylenetetrahydrofolate reductase, markedly increase the risk of developing a wide array of diseases, including cardiovascular disease, Alzheimer’s disease, and cancer. High intake of dietary folate (present in leafy greens and other fruits and vegetables) can modulate the harmful effects associated with MTHFR.
Biological responses to low-dose exposures to toxins or other stressors such as exercise, heat, cold, fasting, and xenohormetics. Hormetic responses are generally favorable and elicit a wide array of protective mechanisms. Examples of xenohormetic substances include plant polyphenols – molecules that plants produce in response to stress. Some evidence suggests plant polyphenols may have longevity-conferring effects when consumed in the diet.
A critical element of the body’s immune response. Inflammation occurs when the body is exposed to harmful stimuli, such as pathogens, damaged cells, or irritants. It is a protective response that involves immune cells, cell-signaling proteins, and pro-inflammatory factors. Acute inflammation occurs after minor injuries or infections and is characterized by local redness, swelling, or fever. Chronic inflammation occurs on the cellular level in response to toxins or other stressors and is often “invisible.” It plays a key role in the development of many chronic diseases, including cancer, cardiovascular disease, and diabetes.
A peptide hormone secreted by the beta cells of the pancreatic islets cells. Insulin maintains normal blood glucose levels by facilitating the uptake of glucose into cells; regulating carbohydrate, lipid, and protein metabolism; and promoting cell division and growth. Insulin resistance, a characteristic of type 2 diabetes, is a condition in which normal insulin levels do not produce a biological response, which can lead to high blood glucose levels.
A physiological condition in which cells fail to respond to the normal functions of the hormone insulin. During insulin resistance, the pancreas produces insulin, but the cells in the body become resistant to its actions and are unable to use it as effectively, leading to high blood sugar. Beta cells in the pancreas subsequently increase their production of insulin, further contributing to a high blood insulin level.
A broad term that describes periods of voluntary abstention from food and (non-water) drinks, lasting several hours to days. Depending on the length of the fasting period and a variety of other factors, intermittent fasting may promote certain beneficial metabolic processes, such as the increased production of ketones due to the use of stored fat as an energy source. The phrase “intermittent fasting” may refer to any of the following:
A metabolic pathway in which organisms produce ketones. Ketogenesis occurs primarily in the mitochondria of liver cells via the breakdown of fatty acids and ketogenic amino acids. Insulin is the major hormonal regulator of ketogenesis; however, glucagon, cortisol, thyroid hormones, and catecholamines can induce greater breakdown of free fatty acids, thereby increasing the substrates available for use in the ketogenic pathway. The primary ketones used by the body for energy are acetoacetate and beta-hydroxybutyrate.
A diet that causes the body to oxidize fat to produce ketones for energy. A ketogenic diet is low in carbohydrates and high in proteins and fats. For many years, the ketogenic diet has been used in the clinical setting to reduce seizures in children. It is currently being investigated for the treatment of traumatic brain injury, Alzheimer's disease, weight loss, and cancer.
Molecules (often simply called “ketones”) produced by the liver during the breakdown of fatty acids. Ketone production occurs during periods of low food intake (fasting), carbohydrate restrictive diets, starvation, or prolonged intense exercise. There are three types of ketone bodies: acetoacetate, beta-hydroxybutyrate, and acetone. Ketone bodies are readily used as energy by a diverse array of cell types, including neurons.
Lactate is thought to participate in a sort of "lactate shuttle" where, after being produced in muscle from exercise, it is transported in to tissues like the heart, and brain, where it is used as an energy source. Lactate is one of many molecules that falls under a loose group of molecules referred to as exerkines, a broad group of exercise-induced hormonal-like factors. Evidence suggests that lactate is the preferred fuel of the brain. Additionally, rodent studies suggest that lactate mediates some of the benefits of exercise on learning and memory via inducing neuronal brain-derived neurotrophic factor (BDNF) expression.[1] In clinical studies, lactate shows promise as a treatment for inflammatory conditions including traumatic brain injury and as a means to deliver fuel to working muscles.
Long-term meditation is a practice where an individual trains the mind or induces a mode of consciousness designed to promote relaxation, build internal energy or develop a desired mental state. It can range from 20 minutes to an indefinite amount of time. Long-term meditation is associated with increased gray matter density in the brain stem.
An infectious disease caused by bacteria of the Borrelia type which is spread by ticks. The most common sign of infection is an expanding non-painful area of redness on the skin, fever, headache and feeling tired. Lyme disease is the most common disease spread by ticks in the Northern Hemisphere and is estimated to affect 300,000 people a year in the United States and 65,000 people a year in Europe.
The thousands of biochemical processes that run all of the various cellular processes that produce energy. Since energy generation is so fundamental to all other processes, in some cases the word metabolism may refer more broadly to the sum of all chemical reactions in the cell.
A drug commonly used for the treatment of type 2 diabetes. Metformin is in a class of antihyperglycemic drugs called biguanides. It works by decreasing gluconeogenesis in the liver, reducing the amount of sugar absorbed in the gut, and increasing insulin sensitivity. A growing body of evidence indicates that metformin modulates the aging processes to improve healthspan and extend lifespan. Furthermore, metformin may prevent genomic instability by scavenging reactive oxygen species, increasing the activities of antioxidant enzymes, inhibiting macrophage recruitment and inflammatory responses, and stimulating DNA damage responses and DNA repair.[1]
[1] Najafi, Masoud, et al. "Metformin: Prevention of genomic instability and cancer: A review." Mutation Research/Genetic Toxicology and Environmental Mutagenesis 827 (2018): 1-8.
A gene coding for an enzyme that converts homocysteine into methionine; a critical step in the methyl cycle. Natural variation in this gene is common among healthy people, however, some variants have been reported to influence susceptibility to occlusive vascular disease, neural tube defects, Alzheimer’s disease and other forms of dementia, colon cancer, and acute leukemia.
The collection of genomes of the microorganisms in a given niche. The human microbiome plays key roles in development, immunity, and nutrition. Microbiome dysfunction is associated with the pathology of several conditions, including obesity, depression, and autoimmune disorders such as type 1 diabetes, rheumatoid arthritis, muscular dystrophy, multiple sclerosis, and fibromyalgia.
Vitamins and minerals that are required by organisms throughout life in small quantities to orchestrate a range of physiological functions. The term micronutrients encompasses vitamins, minerals, essential amino acids, essential fatty acids.
The term "mindfulness" is derived from the Pali-term sati which is an essential element of Buddhist practice, including vipassana, satipatthana and anapanasati. It has been popularized in the West by Jon Kabat-zinn with his mindfulness-based stress reduction (MBSR) program. Large population-based research studies have indicated that the construct of mindfulness is strongly correlated with well-being and perceived health.
Tiny organelles inside cells that produce energy in the presence of oxygen. Mitochondria are referred to as the "powerhouses of the cell" because of their role in the production of ATP (adenosine triphosphate). Mitochondria are continuously undergoing a process of self-renewal known as mitophagy in order to repair damage that occurs during their energy-generating activities.
The process by which new mitochondria are made inside cells. Many factors can activate mitochondrial biogenesis including exercise, cold shock, heat shock, fasting, and ketones. Mitochondrial biogenesis is regulated by the transcription factor peroxisome proliferator-activated receptor gamma coactivator 1-alpha, or PGC-1α.
A mucopolysaccharide or glycoprotein that is the chief constituent of mucus secreted by the epithelial cells lining the gut in order to produce a barrier preventing infection by microorganisms inhabiting the gut.
A result of oxidative metabolism, which causes damage to DNA, lipids, proteins, mitochondria, and the cell. Oxidative stress occurs through the process of oxidative phosphorylation (the generation of energy) in mitochondria. It can also result from the generation of hypochlorite during immune activation.
In general, anything that can produce disease. Typically, the term is used to describe an infectious agent such as a virus, bacterium, prion, fungus, or other microorganism.
A medication or treatment intended for the prevention of disease.
Oxygen-containing chemically-reactive molecules generated by oxidative phosphorylation and immune activation. ROS can damage cellular components, including lipids, proteins, mitochondria, and DNA. Examples of ROS include: peroxides, superoxide, hydroxyl radical, and singlet oxygen.
A related byproduct, reactive nitrogen species, is also produced naturally by the immune system. Examples of RNS include nitric oxide, peroxynitrite, and nitrogen dioxide.
The two species are often collectively referred to as ROS/RNS. Preventing and efficiently repairing damage from ROS (oxidative stress) and RNS (nitrosative stress) are among the key challenges our cells face in their fight against diseases of aging, including cancer.
The loss of skeletal muscle tissue with age. Sarcopenia is one of the most important causes of functional decline and loss of independence in older adults.
Senescence is a response to stress in which damaged cells suspend normal growth and metabolism. While senescence is vital for embryonic development, wound healing, and cancer immunity, accumulation of senescent cells causes increases inflammation and participates in the phenotype of aging.
A small molecule that functions as both a neurotransmitter and a hormone. Serotonin is produced in the brain and gut and facilitates the bidirectional communication between the two. It regulates many physiological functions, including sleep, appetite, mood, thermoregulation, and others. Many antidepressants are selective serotonin reuptake inhibitors (SSRIs), which work by preventing the reabsorption of serotonin, thereby increasing extracellular levels of the hormone.
A glycoprotein that binds to sex hormones, and is produced mostly by the liver. Testosterone and estradiol circulate in the bloodstream bound mostly to SHBG. Only around 1-2% is unbound or "free", and thus biological active. The relative binding affinity of various sex steroids for SHBG is dihydrotestosterone (DHT) > testosterone: androstenediol> estradiol> estrone.
A cell that has the potential to develop into different types of cells in the body. Stem cells are undifferentiated, so they cannot do specific functions in the body. Instead, they have the potential to become specialized cells, such as muscle cells, blood cells, and brain cells. As such, they serve as a repair system for the body. Stem cells can divide and renew themselves over a long time. In 2006, scientists reverted somatic cells into stem cells by introducing Oct4, Sox2, Klf4, and cMyc (OSKM), known as Yamanaka factors.[1]
The primary male sex hormone. Testosterone is critical to the maintenance of fertility and secondary sexual characteristics in males. Low testosterone levels may increase risk of developing Alzheimer’s disease.
A molecule composed of a glycerol molecule bound to three fatty acids. Triglycerides are the primary component of very-low-density lipoproteins (VLDL). They serve as a source of energy. Triglycerides are metabolized in the intestine, absorbed by intestinal cells, and combined with cholesterol and proteins to form chylomicrons, which are transported in lymph to the bloodstream.
A rhizomatous herbaceous perennial plant of the ginger family that grows wild in the forests of South and Southeast Asia. Turmeric’s strong antioxidant and anti-inflammatory properties are attributed to its high concentration of curcumin. After being boiled and dried out, turmeric has a golden-orange color.
A metabolic disorder characterized by high blood sugar and insulin resistance. Type 2 diabetes is a progressive condition and is typically associated with overweight and low physical activity. Common symptoms include increased thirst, frequent urination, unexplained weight loss, increased hunger, fatigue, and impaired healing. Long-term complications from poorly controlled type 2 diabetes include heart disease, stroke, diabetic retinopathy (and subsequent blindness), kidney failure, and diminished peripheral blood flow which may lead to amputations.
A pituitary hormone that acts to promote the retention of water by the kidneys and increase blood pressure.
A potent water-soluble antioxidant found in citrus fruits. Vitamin C is an essential nutrient involved in tissue repair, neurotransmission, and immune system function. Also known as ascorbic acid.
Sometimes called the protein immunoblot. Used to detect specific proteins in a sample of tissue homogenate or extract. It uses gel electrophoresis to separate native proteins by 3-D structure or denatured proteins by the length of the polypeptide. The proteins are then transferred to a membrane (typically nitrocellulose or PVDF), where they are stained with antibodies specific to the target protein.
The FoundMyFitness Q&A happens monthly for premium members. Attend live or listen in our exclusive member-only podcast The Aliquot.