This episode will make a great companion for a long drive.
A blueprint for choosing the right fish oil supplement — filled with specific recommendations, guidelines for interpreting testing data, and dosage protocols.
The mTOR nutrient-sensing pathway responds to environmental cues, including amino acids. A recent study identified the branched-chain amino acid leucine as the primary amino acid sensor for mTOR. Interestingly, branched-chain amino acids have been favored by bodybuilders because of their ability to enhance muscle growth. Leucine has a higher binding affinity for the mTOR complex in muscle than in fat or other tissues. From an evolutionary standpoint this would have been crucial in the maintenance of lean muscle mass during times when food was scarce. In this clip, Dr. Peter Attia explains the importance of the amino acid leucine and its role in the mTOR pathway.
Rhonda: Are you familiar with, like, any of the dietary nutritional research on IGF-1 and mTOR and specifically with amino acids and how...
Peter: Yeah. I mean that's, sort of, my biggest obsession, I think, is probably around those topics. So it's complicated. I think we have probably a better understanding of mTOR. I mean I think it's very clear that mTOR is amino acid driven. In fact, what's today? Friday? Last Thursday, eight days ago, David Sabatini and his group at MIT published a paper in "Science" that identified the amino acid sensor for mTORC1. Now, it's always been suspected what it was, which was leucine was the highest affinity, but in fact he's now crystallized that structure. So if you even think about it through the lens of, like, "Why do bodybuilders or people who love lifting weights, want to take Branched-Chain Amino Acids while they're exercising?" The reason is largely through this empirical observation that it enhances muscles growth and/or prevents muscle degradation during exercise.
What I think is really interesting is that we now know exactly what's going on. So the Branched-Chain Amino Acids, there are three, leucine, isoleucine, and valine. It turns out that isoleucine and valine are virtually irrelevant. It's pretty much all leucine. And what's really clever just from an evolutionary perspective is that mTORC in muscle has a much higher affinity for leucine than mTORC1 in fat or in hepatocytes. Now, that's a good thing because you'd like to believe that in times of nutrient deprivation even a trace sign of leucine should preferentially provide the muscle with its growth signal before providing the adipocyte or hepatocyte.
So from a nutrient-sensing pathway, what you could infer from that is too little leucine, probably a bad thing, too much leucine, probably a bad thing. Now, what too much and too little are I think remains to be seen.
The other thing to keep in mind is...you know, because one of the questions a friend of mine asked me recently, actually a mutual friend, Tim Ferris, is "Can we take too much leucine during a workout?" And again, I don't think we know the answer but extrapolating from the animal data I think 5 grams of leucine during a workout, probably not harmful. And it also doesn't stick around very long because when we take amino acids in a workout, if you, sort of, sip them throughout the workout you're taking a free amino acid, so it's got a relatively short stay in the body. In fact, one of the pharmaco interests on this front, which is to treat diseases of muscular wasting, is to actually come up with molecules that are not necessarily more potent agonists of the leucine receptor but would stick around a lot longer. Because that's actually the problem with the nutrition side, is we can't keep leucine around long enough to stimulate muscle growth.
An amino acid having aliphatic side-chains with a branch (a central carbon atom bound to three or more carbon atoms). Among the proteinogenic amino acids, there are three BCAAs: leucine, isoleucine and valine.
A cell of the main parenchymal tissue of the liver. Hepatocytes make up 70-85% of the liver's mass. These cells are involved in: protein synthesis, protein storage, transformation of carbohydrates, synthesis of cholesterol, bile salts and phospholipids.
One of the most potent natural activators of the AKT signaling pathway. IGF-1 stimulates cell growth and proliferation, inhibits programmed cell death, mediates the effects of growth hormone, and may contribute to aging and enhancing the growth of cancer after it has been initiated. Similar in molecular structure to insulin, IGF-1 plays a role in growth during childhood and continues later in life to have anabolic, as well as neurotrophic effects. Protein intake increases IGF-1 levels in humans, independent of total caloric consumption.
An enzyme that participates in genetic pathways that sense amino acid concentrations and regulate cell growth, cell proliferation, cell motility, cell survival, protein synthesis, autophagy, and transcription. mTOR integrates other pathways including insulin, growth factors (such as IGF-1), and amino acids. It plays key roles in mammalian metabolism and physiology, with important roles in the function of tissues including liver, muscle, white and brown adipose tissue, and the brain. It is dysregulated in many human diseases, such as diabetes, obesity, depression, and certain cancers. mTOR has two subunits, mTORC1 and mTORC2. Also referred to as “mammalian” target of rapamycin.
Rapamycin, the drug for which this pathway is named (and the anti-aging properties of which are the subject of many studies), was discovered in the 1970s and is used as an immunosuppressant in organ donor recipients.
Learn more about the advantages of a premium membership by clicking below.
Every other week premium members receive a special edition newsletter that summarizes all of the latest healthspan research.