This episode will make a great companion for a long drive.
An essential checklist for cognitive longevity — filled with specific exercise, heat stress, and omega-3 protocols for boosting BDNF. Enter your email, and we'll deliver it straight to your inbox.
An alarming number of environmental exposures affect telomere length and lifespan. The aggregate of these exposures is referred to as the "exposome" – the totality of non-genetic exposures that a person experiences during a lifetime – and includes nutritional, environmental, microbial, financial, and emotional factors. In this clip, Dr. Elissa Epel explains that assessing and quantifying the exposome presents challenges, but telomere length may provide a suitable proxy for investigating it.
Rhonda: So different types of environmental things that can affect aging, a lot of focus of your research has to do with various types of stress. Whether it's diet related or it's psychologically related stress.
Elissa: Right. So one way to think about all of those environmental things is to think about the exposome, all the factors that affect us that are outside of our skin. And so that includes a poor... I'm just going to list factors that are part of our exposome. A poor neighborhood that's dangerous, poor diet, junk food, or processed food diet, being exposed to a lot of psychological stress at work, or domestic violence. So these types of things that are outside of us are also related to shorter telomeres, all of the ones that I just mentioned.
And now there's a growing literature on chemical exposure. So this is very, very disturbing because we're all exposed to these chemicals like BPA and Roundup. And these, a lot of these chemicals in plastics, etc., are mimicking estrogen, they're linked to greater risk sometimes of cancer or other diseases like diabetes, metabolic disease. And we can see...when we look at these aging biomarkers, we can see they're impacting them, inflammation and telomere shortening. So heavy metals, cadmium, lead, those are directly in a dose-response way related to our telomere shortness.
Rhonda: Yeah, I think I actually read a... skimmed a recent publication of yours with the cadmium.
Elissa: Yes, the metals.
Rhonda: The lead.
Elissa: So who knows.
Rhonda: I mean, we're exposed to that in chocolate and rice. I mean, that stuff is definitely...
Elissa: Oh, yeah, arsenic.
Rhonda: Arsenic, right.
Elissa: So it's alarming that we are exposed to so many chemicals and even small particles in our air, air pollution. And all of these are impacting our aging biology in ways we don't know. So telomeres are easy markers that we can measure and index what is the effect of these chemical exposures. And the National Institute of Environmental Health has become very interested in using telomeres as an index of exposures. So, you know, in terms of your question of what in our environment is affecting us, more than we know.
But so far we've determined that things that lead to psychological stress, like an unsafe neighborhood, of course, traumatic experiences leave an imprint on telomeres, particularly when they're in youth early in life. And then the nutrition data is I would say really not surprising and pretty consistent. Which is whole foods, healthy diet are related to longer telomeres. And then you have the kind of foods that create this oxidative stress, inflammatory milieu and those are related to shorter telomeres.
So what do I mean by like the pro-inflammatory foods? So red meat, particularly processed meat, sugar drinks particularly sugared soda, high sugar foods. So those are pretty much the culprits that stand out. Mostly we understand food patterns. But there are some foods that pop out. Caffeine is... sorry, caffeinated coffee is associated with longer telomeres.
Rhonda: And it was quite a bit of coffee, right.
Elissa: Yeah. We just enjoy a mixed latte.
A naturally-occurring element found in soil, water, food, and air. Chronic arsenic exposure is associated with the development of several diseases, including cancer, cardiovascular disease, and diabetes. In utero and early childhood exposure to arsenic is associated with poor cognitive development and increased deaths in young adults.
A measurable substance in an organism that is indicative of some phenomenon such as disease, infection, or environmental exposure.
A commonly occurring metal element. Cadmium is used in batteries, alloys, electroplated coatings, solar cells, plastics, and pigments. Cadmium and its related compounds are carcinogenic and target the body’s cardiovascular, renal, gastrointestinal, neurological, reproductive, and respiratory systems. Exposure to cadmium typically occurs via food, cigarettes, second-hand smoke, or emissions from fossil fuels.
The totality of non-genetic exposures a person experiences during a lifetime. The exposome comprises both tangible and intangible exposures, ranging from food, air, physical surroundings, microbes, and chemicals to psychological stressors, education level, and financial status, among others, and likely has myriad effects on human health. Assessing and quantifying the exposome presents challenges, but the length of telomeres, distinct structures comprised of short, repetitive sequences of DNA located on the ends of chromosomes, may provide a suitable proxy for its assessment.
Naturally occurring metallic elements that adversely affect human health. Heavy metals enter the environment by natural means and through human activities. In very low concentrations, heavy metals maintain various biochemical and physiological functions, but at higher concentrations are often toxic. The most commonly found heavy metals in the environment include arsenic, cadmium, chromium, copper, lead, nickel, and zinc.
A critical element of the body’s immune response. Inflammation occurs when the body is exposed to harmful stimuli, such as pathogens, damaged cells, or irritants. It is a protective response that involves immune cells, cell-signaling proteins, and pro-inflammatory factors. Acute inflammation occurs after minor injuries or infections and is characterized by local redness, swelling, or fever. Chronic inflammation occurs on the cellular level in response to toxins or other stressors and is often “invisible.” It plays a key role in the development of many chronic diseases, including cancer, cardiovascular disease, and diabetes.
A result of oxidative metabolism, which causes damage to DNA, lipids, proteins, mitochondria, and the cell. Oxidative stress occurs through the process of oxidative phosphorylation (the generation of energy) in mitochondria. It can also result from the generation of hypochlorite during immune activation.
Meat that has been modified through salting, curing, fermentation, smoking, or other processes to enhance flavor or improve preservation. Many processing techniques involve the addition of salt, sugar, nitrates, or nitrites. Nitrites, in particular, pose a health concern because during the digestive process, nitrites can form N-nitroso-compounds (NOCs), also known as nitrosamines, which are known carcinogens. Examples of processed meats include sausages, hot dogs, salami, ham, luncheon meats, and cured bacon, among others.
Distinctive structures comprised of short, repetitive sequences of DNA located on the ends of chromosomes. Telomeres form a protective “cap” – a sort of disposable buffer that gradually shortens with age – that prevents chromosomes from losing genes or sticking to other chromosomes during cell division. When the telomeres on a cell’s chromosomes get too short, the chromosome reaches a “critical length,” and the cell stops dividing (senescence) or dies (apoptosis). Telomeres are replenished by the enzyme telomerase, a reverse transcriptase.
Learn more about the advantages of a premium membership by clicking below.
The FoundMyFitness Q&A happens monthly for premium members. Attend live or listen in our exclusive member-only podcast The Aliquot.