This episode will make a great companion for a long drive.
A blueprint for choosing the right fish oil supplement — filled with specific recommendations, guidelines for interpreting testing data, and dosage protocols.
Toxic stress, which results from prolonged adversity due to physical or emotional abuse, chronic neglect, exposure to violence (especially early in life), and workplace burnout can have long-lasting repercussions on a person's mental and physical health. People who experience toxic stress often develop a profile of perseverative cognition – a prolonged response to stress that manifests as worrying or rumination and is characterized by accelerated biomarkers of aging, shortened telomeres, and inflammation. In this clip, Dr. Elissa Epel describes how stress – and even a pessimistic attitude – can modulate telomere length.
Rhonda: So getting to the psychological stress part, you have looked a lot at various types of psychological stressors. And those seem to be, as you mentioned, biomarked by having shorter telomere. But you've also looked at a variety of other types of stress, which seems to be positive, more healthy. And that seems to sort of buffer some of those negative effects to some degree. Maybe talk a little bit about that.
Elissa: So just to be really simplistic, when we think about stress, I know it has a bad rap, but that's because it's toxic stress that is causing dysregulated health and depression. And that means something really big, not necessarily what we're all suffering from that neurotic feeling of stress and time pressure. But rather, having traumatic things happen to you, particularly as a child, sets you up to feel threat responses much more in your brain and your body.
So there's that kind of programming that happens in childhood. And then there's like the chronic stressors that we have as adults which are things like caregiving, or job stress, or domestic violence in relationships, so things that go on for years and years. So those are the types of things when we do see telomere shortening and inflammation. And all the rest like work stress is not related to telomere shortness.
Rhonda: Really?
Elissa: Burnout is when you're really... you know, it's gone on long enough that you've gotten this kind of profile of demoralization from it. But not that typical adrenaline type stress that we deal with a lot. I mean, it's not good for us, but I'm just saying that's not gonna show up as much or more consistently, you know.
Rhonda: That's good to know. What about rumination when you're like constantly thinking about something that's maybe...
Elissa: So I would say that rumination is part of chronic stress. That is when things happen and we carry it with us, moment to moment, day to day, where can we keep ourselves in a stress state. So that's one of our targets in our interventions. We really like to look at rumination, that's why meditation is so interesting because it really targets... you know, you can't be present and be ruminating at the same time.
Rhonda: Right. So you think that... because you know, oftentimes, you know, with something high stress, if I'm working on a project, definitely work-related, I do tend to ruminate. But I mean, it's not like, I'm ruminating on it for a year, so that...do you think there is a difference between that sort of short term rumination where you're distracted by whatever projects you have to go and you're not present as much, versus like a very traumatic type of stress that's like, you know, the financial stress or something?
Elissa: I think that it's easy for us to study the big events and the chronic events to see that showing up in our data on accelerated aging. What you're talking about is much harder to measure and study but I absolutely do think it matters. And we are looking at daily stress in our current studies and seeing that people who have this profile of more elevated...we call it perseverative perceptive cognition or perseverative perceptive thought processes, they have accelerated biomarkers of aging, telomere length, and inflammation. So what is that?
Rhonda: What is that type of...
Elissa: So you wake up and you're already worrying about the day, feeling like you can't control it, feeling anxious, so there's a wake-up response. Because what is waking up? It's should be a clean slate but it's not because we have these different tendencies to maybe jump ahead already in the future, right? So worrying, planning, anticipating, we find that our caregivers do that a lot more. They wake up, they're already in a stress state. Their cortisol is higher.
Rhonda: That's what I was gonna ask. Are there any other types of markers?
Elissa: Whereas some caregivers wake up and they feel positive, they're looking forward to the day. They feel joy. They look better in their telomerase enzyme, in their cortisol. So waking-up states are really important to notice.
Rhonda: So like a pessimistic view versus optimistic could you kind of simplify that as?
Elissa: So that's absolutely related and that's kind of the bigger you know, personality thing you take with you and you see the world in that way. So if you're high in pessimism you just expect bad things to happen. Pessimism is related to shorter telomeres, we have that scale on our website because I think it's so important for people to like know their style. You can't necessarily change your style but if you know it, you can be aware of it, you can laugh at it. It's just going to diffuse its power more. Like, you know, that's my pessimistic thought, that's how I work.
Rhonda: I actually find that a good workout, a very good like, you know, if I do a really hard intense run, or a sprint, or a high intensity bicycling spin class or something that if I'm anxious, or I have a, you know, like a sort of a pessimistic view of something, absolutely it helps alleviate that.
Elissa: Yes, absolutely. Your N of 1 is also been shown up in, you know, studies of exercise and studies by Eli Puterman showing that exercise actually does reduce ruminative processes.
A catecholamine hormone produced by the adrenal glands and some neurons. Adrenaline, also known as epinephrine, exerts many effects in the body, the most notable being those associated with the “fight or flight” response to stressors. The effects of epinephrine and norepinephrine (a related catecholamine) are mediated by adrenergic receptors, which act as the interface between the sympathetic nervous system and the cardiovascular system.
A measurable substance in an organism that is indicative of some phenomenon such as disease, infection, or environmental exposure.
Emotional pressure suffered for a prolonged period over which an individual perceives he or she has no control. It involves an endocrine system response in which occurs a release of corticosteroids.
A steroid hormone that participates in the body’s stress response. Cortisol is a glucocorticoid hormone produced in humans by the adrenal gland. It is released in response to stress and low blood glucose. Chronic elevated cortisol is associated with accelerated aging. It may damage the hippocampus and impair hippocampus-dependent learning and memory in humans.
A mood disorder characterized by profound sadness, fatigue, altered sleep and appetite, as well as feelings of guilt or low self-worth. Depression is often accompanied by perturbations in metabolic, hormonal, and immune function. A critical element in the pathophysiology of depression is inflammation. As a result, elevated biomarkers of inflammation, including the proinflammatory cytokines interleukin-6 and tumor necrosis factor-alpha, are commonly observed in depressed people. Although selective serotonin reuptake inhibitors and cognitive behavioral therapy typically form the first line of treatment for people who have depression, several non-pharmacological adjunct therapies have demonstrated effectiveness in modulating depressive symptoms, including exercise, dietary modification (especially interventions that capitalize on circadian rhythms), meditation, sauna use, and light therapy, among others.
Any of a group of complex proteins or conjugated proteins that are produced by living cells and act as catalyst in specific biochemical reactions.
A critical element of the body’s immune response. Inflammation occurs when the body is exposed to harmful stimuli, such as pathogens, damaged cells, or irritants. It is a protective response that involves immune cells, cell-signaling proteins, and pro-inflammatory factors. Acute inflammation occurs after minor injuries or infections and is characterized by local redness, swelling, or fever. Chronic inflammation occurs on the cellular level in response to toxins or other stressors and is often “invisible.” It plays a key role in the development of many chronic diseases, including cancer, cardiovascular disease, and diabetes.
A common response to stress, manifested as worrying or rumination. Perseverative cognition modulates the health consequences of stress by prolonging mental and physiological stress-related responses, both before and after exposures to stressors. Scientific evidence suggests that worry, rumination, and anticipatory stress switch on cardiovascular, hormonal, immunological, and gut activity and might have far-reaching effects on health and longevity via myriad harmful effects, including the shortening of telomeres.
The practice of dwelling on external stressors to excess. Rumination can set in motion a cascade of hormonal and physiological responses that harm mental and physical health. A key player in the body’s response to rumination is a biological pathway that starts in the brain’s hypothalamus with the release of corticotrophin-releasing hormone and has a direct effect on many parts of the body including the brain, gut, and DNA. Meditation has been shown to reduce rumination and its negative effects.
An enzyme that extends the telomeres of chromosomes. Telomerase adds specific nucleotide sequences to the ends of existing chromosomes. Telomerase activity is highly regulated during development, and its activity is at an almost undetectable level of activity in fully developed cells. This lack of activity causes the cell to age. If telomerase is activated in a cell, the cell will continue to grow and divide, or become "immortal," which is important to both aging and cancer. Telomerase enzyme activity has been detected in more than 90 percent of human cancers.
Distinctive structures comprised of short, repetitive sequences of DNA located on the ends of chromosomes. Telomeres form a protective “cap” – a sort of disposable buffer that gradually shortens with age – that prevents chromosomes from losing genes or sticking to other chromosomes during cell division. When the telomeres on a cell’s chromosomes get too short, the chromosome reaches a “critical length,” and the cell stops dividing (senescence) or dies (apoptosis). Telomeres are replenished by the enzyme telomerase, a reverse transcriptase.
Learn more about the advantages of a premium membership by clicking below.
If you enjoy the fruits of , you can participate in helping us to keep improving it. Creating a premium subscription does just that! Plus, we throw in occasional member perks and, more importantly, churn out the best possible content without concerning ourselves with the wishes of any dark overlords.