A blueprint for choosing the right fish oil supplement — filled with specific recommendations, guidelines for interpreting testing data, and dosage protocols.
"Obese individuals have inefficient mitochondria that produce more reactive oxygen species" Click To Tweet
"Over 50% of adult carcinomas are associated with nonfunctional tumor suppressor gene p53" Click To Tweet
"Supplementing with selenium mitigated the increased risk of prostate cancer seen with high doses of vitamin E" Click To Tweet
Dr. Rhonda Patrick explains what antioxidants are, why they are important, and how they prevent DNA damage, a well-known cancer initiator.
However, in the context of someone that already has cancer, DNA damage can activate genes that kill cancer cells. Moreover, taking mega doses (i.e. 400 IU/day) of alpha tocopherol has the unintended side-effect of actually depleting tissue levels of another important form of vitamin E that plays an anti-inflammatory role, known as gamma tocopherol.
Tissue depletion of gamma tocopherol may be an especially important missing link that helps explain the correlation between vitamin E supplementation and prostate cancer established in the Selenium and Vitamin E Cancer Prevention Trial (SELECT).
What are antioxidants and why do we need them?
How reactive oxidation and nitration cause cancer through DNA damage.
How oxidation and nitration also cause diseases not related to cancer.
Our bodies naturally produce antioxidants such as glutathione, CoQ10, and superoxide dismutase.
Having sufficient levels of both alpha tocopheral and gamma tocopheral (vitamin E) are needed for optimal antioxidative functionality.
Selenium can compensate for lack of gamma tocopherol and reduce risk of prostate cancer.
A neurodegenerative disorder characterized by progressive memory loss, spatial disorientation, cognitive dysfunction, and behavioral changes. The pathological hallmarks of Alzheimer's disease include amyloid-beta plaques, tau tangles, and reduced brain glucose uptake. Most cases of Alzheimer's disease do not run in families and are described as "sporadic." The primary risk factor for sporadic Alzheimer's disease is aging, with prevalence roughly doubling every five years after age 65. Roughly one-third of people aged 85 and older have Alzheimer's. The major genetic risk factor for Alzheimer's is a variant in the apolipoprotein E (APOE) gene called APOE4.
A molecule that inhibits oxidative damage to DNA, proteins, and lipids in cells. Oxidative damage plays a role in the aging process, cancer, and neurodegeneration. Many vitamins and plant-based compounds are antioxidants.
A major contributing factor to aging, cellular senescence, and the development of cancer. Byproducts of both mitochondrial energy production and immune activity are major sources of DNA damage. Additionally, environmental stressors can increase this base level of damage. DNA damage can be mitigated by cellular repair processes; however, the effectiveness of these processes may be influenced by the availability of dietary minerals, such as magnesium, and other dietary components, which are needed for proper function of repair enzymes.
An antioxidant compound produced by the body’s cells. Glutathione helps prevent damage from oxidative stress caused by the production of reactive oxygen species.
A critical element of the body’s immune response. Inflammation occurs when the body is exposed to harmful stimuli, such as pathogens, damaged cells, or irritants. It is a protective response that involves immune cells, cell-signaling proteins, and pro-inflammatory factors. Acute inflammation occurs after minor injuries or infections and is characterized by local redness, swelling, or fever. Chronic inflammation occurs on the cellular level in response to toxins or other stressors and is often “invisible.” It plays a key role in the development of many chronic diseases, including cancer, cardiovascular disease, and diabetes.
A type of white blood cell. Macrophages engulf and digest cellular debris, foreign substances, microbes, cancer cells, and oxidized LDL in a process called phagocytosis. After phagocytizing oxidized LDL, macrophages are referred to as foam cells.
Tiny organelles inside cells that produce energy in the presence of oxygen. Mitochondria are referred to as the "powerhouses of the cell" because of their role in the production of ATP (adenosine triphosphate). Mitochondria are continuously undergoing a process of self-renewal known as mitophagy in order to repair damage that occurs during their energy-generating activities.
The process of generating energy that occurs when mitochondria couple oxygen with electrons that have been derived from different food sources including glucose, fatty acids, and amino acids.
A result of oxidative metabolism, which causes damage to DNA, lipids, proteins, mitochondria, and the cell. Oxidative stress occurs through the process of oxidative phosphorylation (the generation of energy) in mitochondria. It can also result from the generation of hypochlorite during immune activation.
Also known as TP53, this gene homolog is crucial in multicellular organisms, where it prevents cancer formation, thereby functioning as a tumor suppressor. As such, p53 has been described as "the guardian of the genome" because of its role in conserving stability by preventing genome mutation. Hence, TP53 is classified as a tumor suppressor gene.
Protein complexes inside cells that degrade misfolded, damaged or unneeded proteins via proteolysis, which is a chemical reaction that breaks peptide bonds.
The 3-dimensional structure of a protein. The structure of a protein is determined by its amino acid constituents, the interaction of its amino acids with each other, and the interaction of its amino acid constituents with the environment surrounding the protein. The conformation then determines how the protein functions and how long its half-life is.
Nitrogen-containing chemically-reactive molecules generated by the immune system. RNS are produced in animals when nitric oxide reacts with superoxide to form peroxynitrite. They can damage cellular components, including lipids, proteins, mitochondria, and DNA. Examples of RNS include nitric oxide, peroxynitrite, and nitrogen dioxide.
A related byproduct, reactive oxygen species, is generated by oxidative phosphorylation and immune activation. Examples of ROS include: peroxides, superoxide, hydroxyl radical, and singlet oxygen.
The two species are often collectively referred to as ROS/RNS. Preventing and efficiently repairing damage from RNS (nitrosative stress) and ROS (oxidative stress) are among the key challenges our cells face in their fight against diseases of aging, including cancer.
Oxygen-containing chemically-reactive molecules generated by oxidative phosphorylation and immune activation. ROS can damage cellular components, including lipids, proteins, mitochondria, and DNA. Examples of ROS include: peroxides, superoxide, hydroxyl radical, and singlet oxygen.
A related byproduct, reactive nitrogen species, is also produced naturally by the immune system. Examples of RNS include nitric oxide, peroxynitrite, and nitrogen dioxide.
The two species are often collectively referred to as ROS/RNS. Preventing and efficiently repairing damage from ROS (oxidative stress) and RNS (nitrosative stress) are among the key challenges our cells face in their fight against diseases of aging, including cancer.
A potent water-soluble antioxidant found in citrus fruits. Vitamin C is an essential nutrient involved in tissue repair, neurotransmission, and immune system function. Also known as ascorbic acid.
Every other week premium members receive a special edition newsletter that summarizes all of the latest healthspan research.