1. 1

A healthy gut microbiota is important for cognitive function at any age, but especially during development. Poor dietary quality in early life (i.e., consuming excess sugar) negatively impacts the composition of the gut microbiota and impairs cognitive functioning; however, the mechanisms that drive these changes are unclear. Authors of a new report detail the functional relationship between detrimental gut microbes and hippocampal memory in rats exposed to excess sugar during adolescence.

Germ-free mice, which are born and raised in a sterile environment, demonstrate impaired brain development compared to mice with a normal gut microbiota. This suggests that microbiota composition in early life may impact cognitive function in adulthood. Dietary strategies that minimize sugar intake may improve microbiota quality and maximize developmental potential in children and adolescents.

The investigators conducted a two-part experiment in rats. In the first experiment, they fed sugar-sweetened water or plain water to juvenile rats for 11 weeks. They sequenced bacterial DNA from the rats' fecal samples to measure changes in the gut microbiota. In the second experiment, the researchers treated juvenile rats with antibiotics or a placebo for seven days. Then they treated one half of the antibiotic group with a bacterial culture of Parabacteroides distasonis and Parabacteroides johnsonii, while the other half received a placebo. In both experiments, rats completed a series of tests to measure memory function in adulthood. Finally, the researchers measured gene expression in the hippocampus, one the major memory centers of the brain.

Adult sugar-fed rats exhibited impaired performance on memory tasks associated with the hippocampus, but not other memory centers. The authors discovered that sugar consumption led to an increase in Parabacteroides bacteria in the gut that correlated with impaired hippocampal function. When antibiotic-treated rats were given Parabacteroides distasonis and Parabacteroides johnsonii as a supplement in adolescence, they exhibited similar deficits in memory performance in adulthood as sugar-fed rats. Sugar consumption altered the expression of genes associated with neurotransmitter signaling, while Parabacteroides treatment altered genes associated with metabolic function, neurodegenerative disease, and dopamine signaling.

The authors of this comprehensive report concluded that early-life dietary factors like sugar consumption impact brain development and may impair memory via changes in the gut microbiota.

Link to full study.

Learn more about sugar and its effects on the brain and body in this podcast featuring Dr. Rhonda Patrick.

  1. You must first login , or register before you can comment.

    Markdown formatting available
     

This news story was included in a recent science digest.

The science digest is a special email we send out just twice per month to members of our premium community. It covers in-depth science on familiar FoundMyFitness related topics.

If you're interested in trying out a few issues for free, enter your email below or click here to learn more about the benefits of premium membership here.

Verifying email address...